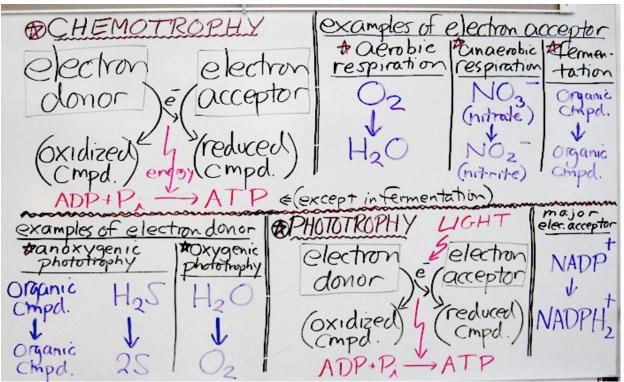
CATABOLISM: CHEMOTROPHY vs. PHOTOTROPHY

The table below (with the supplementary whiteboard diagram) expands on the introductory handout to clarify the differences between the chemotrophic and phototrophic processes of catabolism. It still maintains the generalized aspect of not showing specific pathways and cycles, but rather the end result. The **electron acceptors** indicated are "external" for the respirers: O₂ for aerobic respiration and an "O₂-substitute" (examples: nitrate, sulfate) for anaerobic respiration.


The terminology associated with the nature of the **electron donor** applies to both Chemotrophy and Phototrophy. Those which utilize an **organic** electron donor are termed **organotrophs**, and those which utilize an **inorganic** electron donor are **lithotrophs**. Of the phototrophs, those which oxidize H₂O and evolve O₂ are termed <u>oxygenic phototrophs</u>, and those which use other electron donors and do not evolve O₂ are <u>anoxygenic phototrophs</u>.

catabolic categories		electron donor	light essential?	phosphorylation	major electron acceptor	1
CHEMOTROPHY	aerobic respiration	organic or inorganic		oxidative	O ₂	e x t e
	anaerobic respiration	organic or inorganic		oxidative	"O ₂ -substitute"	r n a 1
	fermentation	organic	_	substrate-level	organic cmpd.	i
PHOTOTROPHY [*]	oxygenic phototrophy	inorganic (H ₂ O)	+	photo	NADP+	n t e r
	anoxygenic	inorganic (e.g., H ₂ S) or organic	Ŧ	photo	NADP+	n a 1

*<u>Examples of phototrophs</u>:

Electron donor is H₂O; O₂ is evolved: PLANTS, ALGAE, CYANOBACTERIA. Electron donor is H₂S; elemental S is evolved: PURPLE AND GREEN SULFUR PHOTOSYNTHETIC BACTERIA.

Electron donor is organic: PURPLE NON-SULFUR PHOTOSYNTHETIC BACTERIA.

rev. 2/17/14